--- title: "6. Comparison of Fixed Weights" author: "Matt Secrest and Isaac Gravestock" output: rmarkdown::html_vignette: toc: true toc_depth: 2 vignette: > %\VignetteIndexEntry{6. Comparison of Fixed Weights} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- # Introduction In a `psborrow2` analysis it is possible to specify fixed weights for an observation's log-likelihood contribution. This is similar to a weighted regression or a fixed power prior parameter. This vignette will show how weights can be specified and compare regression model results with other packages. We will compare a `glm` model with weights, a weighted likelihood in Stan with `psborrow2`, and `BayesPPD::glm.fixed.a0` for generalized linear models with fixed `a0` (power prior parameter). Note that we'll need `cmdstanr` to run this analysis. Please install `cmdstanr` if you have not done so already following [this guide](https://mc-stan.org/cmdstanr/articles/cmdstanr.html). ```r library(psborrow2) library(cmdstsanr) # Error in library(cmdstsanr): there is no package called 'cmdstsanr' library(BayesPPD) library(ggplot2) # Warning: package 'ggplot2' was built under R version 4.3.2 ``` # Logistic regression We fit logistic regression models with the external control arm having weights (or power parameters) equal to 0, 0.25, 0.5, 0.75, 1. The internal treated and control patients have weight = 1. The model has a treatment indicator and two covariates, `resp ~ trt + cov1 + cov2`. ### glm ```r logistic_glm_reslist <- lapply(c(0, 0.25, 0.5, 0.75, 1), function(w) { logistic_glm <- glm( resp ~ trt + cov1 + cov2, data = as.data.frame(example_matrix), family = binomial, weights = ifelse(example_matrix[, "ext"] == 1, w, 1) ) glm_summary <- summary(logistic_glm)$coef ci <- confint(logistic_glm) data.frame( fitter = "glm", borrowing = w, variable = c("(Intercept)", "trt", "cov1", "cov2"), estimate = glm_summary[, "Estimate"], lower = ci[, 1], upper = ci[, 2] ) }) ``` ### BayesPPD ```r set.seed(123) logistic_ppd_reslist <- lapply(c(0, 0.25, 0.5, 0.75, 1), function(w) { logistic_ppd <- glm.fixed.a0( data.type = "Bernoulli", data.link = "Logistic", y = example_matrix[example_matrix[, "ext"] == 0, ][, "resp"], x = example_matrix[example_matrix[, "ext"] == 0, ][, c("trt", "cov1", "cov2")], historical = list(list( y0 = example_matrix[example_matrix[, "ext"] == 1, ][, "resp"], x0 = example_matrix[example_matrix[, "ext"] == 1, ][, c("cov1", "cov2")], a0 = w )), lower.limits = rep(-100, 5), upper.limits = rep(100, 5), slice.widths = rep(1, 5), nMC = 10000, nBI = 1000 )[[1]] ci <- apply(logistic_ppd, 2, quantile, probs = c(0.025, 0.975)) data.frame( fitter = "BayesPPD", borrowing = w, variable = c("(Intercept)", "trt", "cov1", "cov2"), estimate = colMeans(logistic_ppd), lower = ci[1, ], upper = ci[2, ] ) }) ``` ### psborrow2 ```r logistic_psb_reslist <- lapply(c(0, 0.25, 0.5, 0.75, 1), function(w) { logistic_psb2 <- create_analysis_obj( data_matrix = as.matrix(cbind( example_matrix, w = ifelse(example_matrix[, "ext"] == 1, w, 1) )), covariates = add_covariates(c("cov1", "cov2"), priors = prior_normal(0, 100) ), borrowing = borrowing_full("ext"), treatment = treatment_details("trt", prior_normal(0, 100)), outcome = outcome_bin_logistic("resp", baseline_prior = prior_normal(0, 1000), weight_var = "w" ), quiet = TRUE ) mcmc_logistic_psb2 <- mcmc_sample(logistic_psb2, chains = 1, verbose = FALSE, seed = 123) mcmc_summary <- mcmc_logistic_psb2$summary( variables = c("alpha", "beta_trt", "beta[1]", "beta[2]"), mean, ~ quantile(.x, probs = c(0.025, 0.975)) ) data.frame( fitter = "psborrow2", borrowing = w, variable = c("(Intercept)", "trt", "cov1", "cov2"), estimate = mcmc_summary$mean, lower = mcmc_summary$`2.5%`, upper = mcmc_summary$`97.5%` ) }) ``` ### Results ```r logistic_res_df <- do.call( rbind, c(logistic_glm_reslist, logistic_ppd_reslist, logistic_psb_reslist) ) logistic_res_df$est_ci <- sprintf( "%.3f (%.3f, %.3f)", logistic_res_df$estimate, logistic_res_df$lower, logistic_res_df$upper ) wide <- reshape( logistic_res_df[, c("fitter", "borrowing", "variable", "est_ci")], direction = "wide", timevar = "fitter", idvar = c("borrowing", "variable"), ) new_order <- order(wide$variable, wide$borrowing) knitr::kable(wide[new_order, ], digits = 3, row.names = FALSE) ``` | borrowing|variable |est_ci.glm |est_ci.BayesPPD |est_ci.psborrow2 | |---------:|:-----------|:-----------------------|:-----------------------|:-----------------------| | 0.00|(Intercept) |0.646 (-0.038, 1.357) |0.691 (-0.014, 1.399) |0.657 (-0.039, 1.381) | | 0.25|(Intercept) |0.394 (-0.131, 0.931) |0.396 (-0.131, 0.941) |0.404 (-0.130, 0.939) | | 0.50|(Intercept) |0.293 (-0.158, 0.751) |0.297 (-0.184, 0.767) |0.304 (-0.169, 0.784) | | 0.75|(Intercept) |0.235 (-0.168, 0.642) |0.240 (-0.175, 0.665) |0.237 (-0.164, 0.654) | | 1.00|(Intercept) |0.196 (-0.172, 0.567) |0.202 (-0.172, 0.578) |0.203 (-0.167, 0.568) | | 0.00|cov1 |-0.771 (-1.465, -0.095) |-0.809 (-1.515, -0.126) |-0.789 (-1.494, -0.099) | | 0.25|cov1 |-0.781 (-1.340, -0.231) |-0.793 (-1.350, -0.236) |-0.794 (-1.351, -0.250) | | 0.50|cov1 |-0.769 (-1.252, -0.291) |-0.776 (-1.271, -0.270) |-0.786 (-1.295, -0.300) | | 0.75|cov1 |-0.758 (-1.191, -0.329) |-0.769 (-1.212, -0.310) |-0.763 (-1.198, -0.324) | | 1.00|cov1 |-0.749 (-1.145, -0.357) |-0.761 (-1.152, -0.369) |-0.758 (-1.150, -0.369) | | 0.00|cov2 |-0.730 (-1.472, -0.008) |-0.745 (-1.496, -0.004) |-0.752 (-1.496, -0.006) | | 0.25|cov2 |-0.559 (-1.114, -0.014) |-0.568 (-1.124, -0.023) |-0.571 (-1.132, -0.016) | | 0.50|cov2 |-0.459 (-0.926, 0.003) |-0.471 (-0.953, -0.003) |-0.464 (-0.928, 0.005) | | 0.75|cov2 |-0.398 (-0.811, 0.011) |-0.402 (-0.814, 0.006) |-0.407 (-0.824, 0.002) | | 1.00|cov2 |-0.358 (-0.731, 0.013) |-0.358 (-0.736, 0.022) |-0.363 (-0.741, 0.016) | | 0.00|trt |0.154 (-0.558, 0.871) |0.137 (-0.572, 0.864) |0.165 (-0.567, 0.894) | | 0.25|trt |0.349 (-0.183, 0.885) |0.361 (-0.170, 0.899) |0.349 (-0.202, 0.875) | | 0.50|trt |0.405 (-0.082, 0.894) |0.415 (-0.068, 0.916) |0.409 (-0.078, 0.892) | | 0.75|trt |0.434 (-0.031, 0.900) |0.436 (-0.031, 0.913) |0.439 (-0.030, 0.919) | | 1.00|trt |0.452 (-0.000, 0.905) |0.456 (-0.010, 0.909) |0.453 (-0.009, 0.917) | ```r logistic_res_df$borrowing_x <- logistic_res_df$borrowing + (as.numeric(factor(logistic_res_df$fitter)) - 3) / 100 ggplot(logistic_res_df, aes(x = borrowing_x, y = estimate, group = fitter, colour = fitter)) + geom_errorbar(aes(ymin = lower, ymax = upper)) + geom_point() + facet_wrap(~variable, scales = "free") ```
plot of chunk logistic_plot

plot of chunk logistic_plot

# Exponential models Now we fit models with an exponentially distributed outcome. There is no censoring in this data set. For `glm` we use `family = Gamma(link = "log")` and specify fixed `dispersion = 1` to fit a exponential model. As before, the external control arm having weights (or power parameters) equal to 0, 0.25, 0.5, 0.75, 1. The internal treated and control patients have weight = 1. The model has a treatment indicator and two covariates, `eventtime ~ trt + cov1 + cov2`. ```r set.seed(123) sim_data_exp <- cbind( simsurv::simsurv( dist = "exponential", x = as.data.frame(example_matrix[, c("trt", "cov1", "cov2", "ext")]), betas = c("trt" = 1.3, "cov1" = 1, "cov2" = 0.1, "ext" = -0.4), lambdas = 5 ), example_matrix[, c("trt", "cov1", "cov2", "ext")], censor = 0 ) ``` ```r head(sim_data_exp) # id eventtime status trt cov1 cov2 ext censor # 1 1 0.14802638 1 0 0 1 0 0 # 2 2 0.05065174 1 0 1 0 0 0 # 3 3 0.01727805 1 0 1 0 0 0 # 4 4 0.13168620 1 0 1 0 0 0 # 5 5 0.07740706 1 0 0 0 0 0 # 6 6 0.04999778 1 0 1 0 0 0 ``` ```r ## glm glm_reslist <- lapply(c(0, 0.25, 0.5, 0.75, 1), function(w) { exp_glm <- glm( eventtime ~ trt + cov1 + cov2, data = sim_data_exp, family = Gamma(link = "log"), weights = ifelse(sim_data_exp$ext == 1, w, 1) ) glm_summary <- summary(exp_glm, dispersion = 1) est <- -glm_summary$coefficients[, "Estimate"] lower <- est - 1.96 * glm_summary$coefficients[, "Std. Error"] upper <- est + 1.96 * glm_summary$coefficients[, "Std. Error"] data.frame( fitter = "glm", borrowing = w, variable = c("(Intercept)", "trt", "cov1", "cov2"), estimate = est, lower = lower, upper = upper ) }) ``` ```r ## BayesPPD set.seed(123) ppd_reslist <- lapply(c(0, 0.25, 0.5, 0.75, 1), function(w) { exp_ppd <- glm.fixed.a0( data.type = "Exponential", data.link = "Log", y = sim_data_exp[sim_data_exp$ext == 0, ]$eventtime, x = as.matrix(sim_data_exp[sim_data_exp$ext == 0, c("trt", "cov1", "cov2")]), historical = list(list( y0 = sim_data_exp[sim_data_exp$ext == 1, ]$eventtime, x0 = as.matrix(sim_data_exp[sim_data_exp$ext == 1, c("cov1", "cov2")]), a0 = w )), lower.limits = rep(-100, 5), upper.limits = rep(100, 5), slice.widths = rep(1, 5), nMC = 10000, nBI = 1000 )[[1]] ci <- apply(exp_ppd, 2, quantile, probs = c(0.025, 0.975)) data.frame( fitter = "BayesPPD", borrowing = w, variable = c("(Intercept)", "trt", "cov1", "cov2"), estimate = colMeans(exp_ppd), lower = ci[1, ], upper = ci[2, ] ) }) ``` ```r ## psborrow2 psb_reslist <- lapply(c(0, 0.25, 0.5, 0.75, 1), function(w) { exp_psb2 <- create_analysis_obj( data_matrix = as.matrix(cbind(sim_data_exp, w = ifelse(example_matrix[, "ext"] == 1, w, 1))), covariates = add_covariates(c("cov1", "cov2"), priors = prior_normal(0, 100) ), borrowing = borrowing_full("ext"), treatment = treatment_details("trt", prior_normal(0, 100)), outcome = outcome_surv_exponential("eventtime", "censor", baseline_prior = prior_normal(0, 1000), weight_var = "w" ), quiet = TRUE ) mcmc_exp_psb2 <- mcmc_sample(exp_psb2, chains = 1, verbose = FALSE, seed = 123) mcmc_summary <- mcmc_exp_psb2$summary( variables = c("alpha", "beta_trt", "beta[1]", "beta[2]"), mean, ~ quantile(.x, probs = c(0.025, 0.975)) ) data.frame( fitter = "psborrow2", borrowing = w, variable = c("(Intercept)", "trt", "cov1", "cov2"), estimate = mcmc_summary$mean, lower = mcmc_summary$`2.5%`, upper = mcmc_summary$`97.5%` ) }) ``` ```r knitr::knit_hooks$set(output = output_hook) ``` ### Results Note: Wald confidence intervals are displayed here for `glm` for the exponential models. ```r res_df <- do.call(rbind, c(glm_reslist, ppd_reslist, psb_reslist)) res_df$est_ci <- sprintf( "%.3f (%.3f, %.3f)", res_df$estimate, res_df$lower, res_df$upper ) wide <- reshape( res_df[, c("fitter", "borrowing", "variable", "est_ci")], direction = "wide", timevar = "fitter", idvar = c("borrowing", "variable"), ) new_order <- order(wide$variable, wide$borrowing) knitr::kable(wide[new_order, ], digits = 3, row.names = FALSE) ``` | borrowing|variable |est_ci.glm |est_ci.BayesPPD |est_ci.psborrow2 | |---------:|:-----------|:----------------------|:----------------------|:----------------------| | 0.00|(Intercept) |1.930 (1.597, 2.263) |1.915 (1.572, 2.236) |1.914 (1.576, 2.239) | | 0.25|(Intercept) |1.581 (1.323, 1.838) |1.567 (1.308, 1.814) |1.573 (1.311, 1.819) | | 0.50|(Intercept) |1.473 (1.251, 1.695) |1.466 (1.247, 1.685) |1.467 (1.244, 1.683) | | 0.75|(Intercept) |1.414 (1.215, 1.613) |1.407 (1.208, 1.601) |1.409 (1.204, 1.605) | | 1.00|(Intercept) |1.376 (1.194, 1.558) |1.369 (1.183, 1.551) |1.374 (1.198, 1.550) | | 0.00|cov1 |0.630 (0.300, 0.959) |0.630 (0.304, 0.960) |0.634 (0.298, 0.973) | | 0.25|cov1 |0.722 (0.453, 0.991) |0.729 (0.459, 1.013) |0.724 (0.455, 1.006) | | 0.50|cov1 |0.786 (0.552, 1.020) |0.789 (0.559, 1.026) |0.788 (0.555, 1.027) | | 0.75|cov1 |0.827 (0.616, 1.037) |0.829 (0.622, 1.044) |0.829 (0.625, 1.040) | | 1.00|cov1 |0.854 (0.662, 1.046) |0.859 (0.668, 1.057) |0.852 (0.666, 1.038) | | 0.00|cov2 |0.043 (-0.309, 0.395) |0.039 (-0.318, 0.382) |0.037 (-0.324, 0.386) | | 0.25|cov2 |-0.009 (-0.273, 0.255) |-0.008 (-0.283, 0.252) |-0.012 (-0.279, 0.251) | | 0.50|cov2 |0.009 (-0.213, 0.232) |0.007 (-0.218, 0.226) |0.008 (-0.217, 0.225) | | 0.75|cov2 |0.023 (-0.173, 0.220) |0.024 (-0.172, 0.216) |0.022 (-0.171, 0.219) | | 1.00|cov2 |0.033 (-0.144, 0.211) |0.033 (-0.145, 0.206) |0.034 (-0.148, 0.212) | | 0.00|trt |1.256 (0.911, 1.601) |1.260 (0.911, 1.629) |1.260 (0.909, 1.620) | | 0.25|trt |1.564 (1.306, 1.822) |1.563 (1.302, 1.816) |1.564 (1.306, 1.816) | | 0.50|trt |1.622 (1.386, 1.859) |1.620 (1.383, 1.851) |1.620 (1.387, 1.850) | | 0.75|trt |1.649 (1.422, 1.875) |1.646 (1.414, 1.871) |1.645 (1.414, 1.865) | | 1.00|trt |1.664 (1.443, 1.884) |1.660 (1.438, 1.874) |1.661 (1.436, 1.875) | ```r res_df$borrowing_x <- res_df$borrowing + (as.numeric(factor(res_df$fitter)) - 3) / 100 ggplot(res_df, aes(x = borrowing_x, y = estimate, group = fitter, colour = fitter)) + geom_errorbar(aes(ymin = lower, ymax = upper)) + geom_point() + facet_wrap(~variable, scales = "free") ```
plot of chunk exp_plot

plot of chunk exp_plot