0. Overview of the package

This vignette provides an overview of BayesERtools.

0. Analysis workflow & supported model types

Analysis can be performed in the following simple steps.

Figure: Overall analysis workflow

Supported model types are as follows:

Binary endpoint
Continuous endpoint
Linear (logit) Emax (logit) Linear Emax
backend rstanarm rstanemax rstanarm rstanemax
reference 🔗 🔗 🔗 🔗
develop model
simulate & plot ER
exposure metrics selection
covariate selection
covariate forest plot 🟡
✅ Available, 🟡 In plan/under development, ❌ Not in a current plan

1. ER model development

The package provides a set of functions to develop ER models. The following functions are available:

Binary endpoint

  • Linear logistic regression:
    • dev_ermod_bin(), dev_ermod_bin_exp_sel(), dev_ermod_bin_cov_sel()
  • Emax logistic regression:
    • dev_ermod_bin_emax(), dev_ermod_bin_emax_exp_sel()

Continuous endpoint

  • Linear regression:
    • dev_ermod_lin(), dev_ermod_lin_exp_sel(), dev_ermod_lin_cov_sel()
  • Emax model:
    • dev_ermod_emax(), dev_ermod_emax_exp_sel()

Figure: dev_ermod_*() functions

2. Simulation from developed ER model

The following functions are available for simulation from developed ER models:

  • sim_er()
  • sim_er_new_exp(), sim_er_curve()
  • sim_er_new_exp_marg(), sim_er_curve_marg()

Figure: sim_er_*() functions

3. Plot simulated ER curve

Simulated ER curve can be visualized with the following functions:

  • plot_er()
  • plot_er_exp_sel()

Figure: plot_er_*() functions

Acknowledgement

Figures created with https://www.biorender.com